Skip to content

‘Gammarus duebeni’, los pequeños crustáceos trituradores de microplásticos

‘Gammarus duebeni’, el animal parecido a un camarón que puede fragmentar microplásticos. Alicia Mateos Cárdenas, Author provided

Los microplásticos están presentes en los océanos y mares y se ha demostrado su presencia en varias especies marinas. Sin embargo, sabemos relativamente poco acerca de lo que ocurre en ríos y lagos. No conocemos exactamente su origen, su destino ni –lo que es más importante– su impacto en las cadenas alimentarias.

Hasta ahora, la fragmentación del plástico se había atribuido en gran medida a procesos como la exposición al sol o la acción de las olas, que pueden durar años o décadas. Pero resulta que un pequeño crustáceo de río, parecido a un camarón, es capaz de hacerlo mucho más rápido.

Soy investigadora postdoctoral especializada en microplásticos en el medioambiente. En mi último estudio, mi equipo y yo demostramos que un crustáceo muy común en ríos es capaz de romper microplásticos (piezas de plástico de menos de 5 mm) en nanoplásticos (fragmentos menores de un micrómetro, cinco mil veces más pequeños). Este proceso biológico puede suceder en cuestión de días, mucho más rápido de lo estimado previamente.

Nuestro hallazgo, publicado recientemente en la revista Scientific Reports, destaca el papel de la fragmentación biológica de los microplásticos, que prácticamente no se ha investigado hasta ahora.

El animal en cuestión es un crustáceo de 2 cm de largo, el anfípodo de agua dulce Gammarus duebeni. Aunque esta especie en particular vive en arroyos irlandeses, pertenece a un grupo más grande de invertebrados muy comunes tanto en aguas continentales como en océanos de todo el mundo. Por lo tanto, nuestro descubrimiento tiene grandes implicaciones para el estudio del destino de los microplásticos en el medio acuático.

Arroyo irlandés
Los anfípodos ‘Gammarus duebeni’ se encuentran en arroyos irlandeses como este en Cork.
Alicia Mateos Cárdenas, Author provided

Nuestros primeros experimentos tenían como objetivo comprender los posibles efectos negativos (si los hubiera) de la ingesta de microplásticos en estos anfípodos. Sin embargo, los resultados preliminares nos llevaron a desarrollar nuevos experimentos para demostrar que G. duebeni los estaba fragmentando biológicamente.

Para comprobarlo, expusimos a los pequeños crustáceos a cierto tipo de microplásticos de polietileno –perfectamente esféricos, como las microperlas en exfoliantes, y con un tinte específico– en el laboratorio. Después, diseccionamos los tractos digestivos de los animales y los observamos en un microscopio de fluorescencia, capaz de rastrear los microplásticos coloreados en los tejidos.

Demostramos así que Gammarus duebeni es capaz de romper los microplásticos en fragmentos de diferentes formas y tamaños, incluidos los nanoplásticos, en menos de cuatro días.

Fuimos capaces de detectar esta fragmentación gracias a la forma esférica de las microperlas, el tipo de microplásticos que utilizamos inicialmente. Cualquier plástico con una forma irregular tenía que proceder de la fragmentación realizada por los animales. Casi el 66 % de los microplásticos encontrados en los intestinos de los anfípodos habían sufrido este proceso en tan solo cuatro días.

Sorprendentemente, la proporción de fragmentos de plástico más pequeños fue más alta cuando los anfípodos fueron purgados en el laboratorio en un proceso de depuración, es decir, en un ambiente limpio sin plásticos pero con su comida. Este hallazgo indica que la fragmentación biológica podría estar estrechamente relacionada con el proceso de alimentación.

Fragmentos de microplásticos y nanoplásticos
Dos microplásticos (izquierda) y nanoplásticos (derecha) encontrados en los tractos digestivos de los anfípodos.
Alicia Mateos-Cárdenas, Author provided

Además, llevamos a cabo controles de calidad, varios experimentos paralelos para asegurarnos de que el plástico estaba siendo fragmentado por los anfípodos y no por otras razones, y de que efectivamente estábamos observando las partículas fluorescentes.

Microplásticos en la cadena alimentaria

¿Por qué son importantes nuestros resultados? Ya sabemos que los microplásticos pueden acumularse en el intestino de aves marinas y peces, y actualmente se cree que las partículas plásticas más pequeñas (nanoplásticos) podrían incluso penetrar células y tejidos, donde sus efectos podrían ser mucho más difíciles de predecir.

El hecho de que un animal tan común pueda generar rápidamente una gran cantidad de nanoplásticos en cuestión de días es preocupante. Dado que estos crustáceos son presa de peces y aves, cualquier fragmento o nanoplástico que produzcan podría entrar en la cadena alimentaria.

Por ejemplo, científicos de la Universidad de Cardiff han demostrado recientemente por primera vez el transporte de microplásticos entre diferentes niveles de la cadena trófica de un río, desde pequeños invertebrados hasta mirlos acuáticos europeos, uno de los pocos pájaros cantores que pueden nadar bajo el agua. Encontraron microplásticos en el material regurgitado por los mirlos y en los excrementos tanto de los adultos como de los pollos.

Todavía no sabemos exactamente qué efecto tiene esta transferencia de nanoplásticos en las aves, especialmente en las más jóvenes. Pero nuestros resultados sobre la fragmentación biológica de los microplásticos pueden ayudar a comprender mejor el papel que pueden desempeñar los animales en el destino de los plásticos en las aguas.

The Conversation

In this study, Alicia Mateos Cárdenas received funding from the Irish Environmental Protection Agency (EPA). This project was funded under the EPA Research Programme 2014–2020. The EPA Research Programme is a Government of Ireland initiative funded by the Department of Communications, Climate Action and Environment. It is administered by the Environmental Protection Agency, which has the statutory function of co-ordinating and promoting environmental research. This UCC project was supervised by Professor Marcel Jansen, Dr Frank van Pelt and Professor John O’Halloran.

Fuente: The Conversation (Creative Commons)
Author: Alicia Mateos Cárdenas, Postdoctoral Researcher, University College Cork